indeterminate forms
types of indeterminate forms:
- [latex]\frac00[/latex]
- [latex] \frac\infty\infty [/latex]
- [latex] 0\;\times\infty [/latex]
- [latex] \infty-\infty [/latex]
- [latex] 1^\infty [/latex]
- [latex] 0^0[/latex]
- [latex] \infty^\infty [/latex]
This all types of limits can be evaluated by using the L' Hospital's rule.
L' Hospital's rule
If f(x) and g(x) are two function of x which can be expanded by Taylor's series in the neighborhood of x = a and if [latex] \lim_{x\rightarrow a}f\left(x\right)=f\left(a\right)=0 [/latex], [latex] \lim_{x\rightarrow a}g\left(x\right)=g\left(a\right)=0 [/latex], then
[latex]\lim_{x\rightarrow a}\frac{f\left(x\right)}{g\left(x\right)}=\lim_{x\rightarrow a}\frac{f'\left(x\right)}{g'\left(x\right)}[/latex]
formulas:
[latex]\lim_{x\rightarrow 0}\frac{\sin x}x=1[/latex]